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Abstract

As IoT devices grow more widespread, scaling current anal-
ysis techniques to match becomes an increasingly critical task.
Part of this challenge involves not only rehosting the firmware
of these embedded devices in an emulated environment, but to
do so and discover real vulnerabilities. Current state-of-the-art
approaches for rehosting must account for the discrepancies
between emulated and physical devices, and thus generally fo-
cus on improving the emulation fidelity. However, this pursuit
of fidelity ignores other potential solutions.

In this paper, we propose a novel rehosting technique, user-
space single-service rehosting that emulates a single firmware
service in user-space. We study the rehosting process in-
volved in hundreds of firmware samples to generalize a set
of roadblocks that prevent emulation and create interventions
to resolve them. Our prototype Greenhouse automatically
attempts to rehost our collected 7,111 firmware images from
nine different vendors. Our approach sidesteps many of the
challenges encountered by previous rehosting techniques and
enables us to apply common vulnerability discovery tech-
niques to our rehosted images such as user-space coverage-
guided fuzzing. Using these techniques, we find 722 N-day
vulnerabilities and 24 zero-day vulnerabilities.

1 Introduction

The Internet of Things (IoT) outnumbers humans almost
2-to-1: As of 2022, approximately 14.4 billion connected
IoT devices [16] exist out in the wild, and current estimates
project the total number to reach 34.2 billion by 2025 [20].
Naturally, the security of these devices is not perfect, with 747
vulnerabilities across 86 different vendors disclosed in the first
half of 2022 alone [33]. The actual number of vulnerabilities,
undiscovered, unreported, and lurking in IoT firmware, is
almost certainly much higher.

To discover latent vulnerabilities in IoT devices, re-
searchers look to apply program analysis techniques, includ-
ing dynamic approaches such as web scanning and coverage-
guided fuzzing, on IoT device firmware. However, such at-

tempts are often curtailed by the inaccessibility of IoT devices:
Purchasing them does not scale and can be time-consuming,
overly expensive, or even impossible. Even with physical
access to IoT devices, the rigidity of hardware, operating sys-
tems, and applications on such devices usually make applying
aforementioned dynamic analysis techniques extremely diffi-
cult.

A common solution to address this problem is firmware
rehosting, or rehosting for short, which emulates IoT software
on powerful, flexible, non-IoT devices, such as PCs or servers.
A key challenge in rehosting is the high-fidelity emulation
of characteristics and features that are specific to each IoT
device. For example, IoT firmware commonly stores data in
NVRAM (non-volatile RAM), which does not exist on most
x86 PCs and must be emulated by the rehosting environment.
Peripherals can pose difficulties, too. A software service on a
router may send and receive radio signals using antennas that
only exist on the router, and a full emulation of behaviors of
antennas usually requires significant manual effort.

Seeking high rehosting fidelity, researchers have proposed
techniques either to emulate peripherals [3,12,17,22,28] or to
proxy the communication to peripherals running on real IoT
devices [15,27,32]. However, the current state of peripheral-
aware rehosting techniques only allows for the analysis of
firmware based on small, embedded software platforms (such
as FreeRTOS or Arduino) or no operating system at all (“bare
metal” blobs). Critically, current approaches cannot scale
to the analysis of more complex Linux-based firmware, the
operating system used by 43% of IoT devices [13].

State-of-the-art rehosting solutions targeting Linux-based
firmware currently rely on peripheral-oblivious full-system
rehosting, typically by repacking the firmware sample into
a standard filesystem format, replacing the embedded Linux
kernel with a rehost-specific version to support some ad hoc
general device emulation, and booting the firmware sample
in a system emulator such as QEMU [4, 20]. However, this
implicit concession of rehosting fidelity (e.g., by replacing
the embedded kernel) leads to rehosting failures. For exam-
ple, Firmadyne [4] only achieves IP connectivity on 21% of



attempted firmware samples. Even for firmware that is os-
tensibly properly rehosted, lack of fidelity leads to errors in
firmware operation: FirmAE [20], a refined version of Firma-
dyne [4], measures a successful rehosting rate of 79%, but
we show in this paper that almost half of FirmAE-rehosted
targets actually do not maintain sufficient functionality to test
externally-facing services.

One clear research direction to mitigate rehosting failures
is to increase fidelity. But is this pursuit of fidelity in emula-
tion a must for rehosting? We performed a random sampling
of 100 firmware CVEs reported on NVD [25] in the last two
years and found that only 14% of them were hardware related,
and many of the remaining ones are intrinsically indepen-
dent of hard-to-emulate, device-specific characteristics and
features. For example, Tenda recently disclosed 10 Buffer
Overflow vulnerabilities in network-facing functions of the
httpd binary of its Linux-based AC21 device, and none of
these binaries interact with peripherals. For the purpose of
vulnerability discovery and vulnerability verification on IoT
software, it is often unnecessary to achieve high-fidelity emu-
lation of these characteristics and features if the vulnerable
service can run without them. In fact, the pursuit of fidelity
can blind researchers to other potential techniques that might
be able to achieve successful purpose-specific rehosting.

In this paper, we propose a novel rehosting technique: Au-
tomated single-service rehosting. Unlike other rehosting solu-
tions, single-service rehosting does not mandate high-fidelity
emulation of operating systems or hardware. Instead, we
design a series of techniques that automatically find execu-
tion barriers during the rehosting of a firmware service, use a
toolkit of interventions (e.g., patching the service binary to
eliminate certain environment checks) to surmount these bar-
riers, and validate the patched service to check if our patches
break intended features. By not emulating OS- or hardware-
specific characteristics and features, our solution not only
avoids pitfalls encountered by full-system techniques (such
as incompatibilities between the inserted rehosted kernel and
the embedded system itself), but as a bonus also enables user-
space emulation, which significantly reduces the execution
overhead that full-system emulation techniques exhibit. More-
over, user-space emulation enables common vulnerability dis-
covery and verification techniques, such as coverage-guided
fuzzing.

We develop a platform, Greenhouse, to perform automated
rehosting of single-services via user-space emulation. Our ap-
proach fully rehosted 2,055 web servers out of 7,111 crawled
firmware images and successfully confirmed 597 N-day ex-
ploits using the RouterSploit framework [34]. We also inte-
grate our rehosted images with AFL [38] for fuzzing in user-
space, achieving a 300% higher throughput during the course
of finding the same bugs as the state-of-the-art firmware-
fuzzing solution, FirmAFL [39]. We then extended this inte-
gration to nine other rehosted targets and found an additional
37 crashes, 24 of which are confirmed zero-day vulnerabili-

ties.

Finally, in the course of developing service validation
checks for Greenhouse, we found that prior work incorrectly
reported non-functional rehosted firmware services as suc-
cessful rehosting targets. For example, FirmAE performs
an HTTP request against rehosted web servers to determine
rehosting success, but does not check the content of the web-
page or the status code for errors (i.e., only checks if the
device responds with something). These non-functional ser-
vices are of limited use in discovering or assessing vulnera-
bilities. Thus, we also propose new criteria for differentiating
among rehosting failures, partially rehosted services, and fully
rehosted services. Using this technique, our comparative eval-
uation shows that Greenhouse is slightly more successful than
state-of-the-art work at firmware rehosting, but rehosts mostly
different firmware, resulting in 3,326 unique rehosted samples
when combined with full-system rehosting approaches.

Contributions. In summary, our contributions are:

* We propose a novel rehosting technique, user-space
single-service rehosting, for rehosting firmware services
for the purpose of finding and assessing vulnerabilities
on IoT software. We implement this technique in a pow-
erful prototype, called Greenhouse.

* We thoroughly study the rehosting process and provide
a detailed breakdown of causes (termed roadblocks) of
emulation failures in user-mode rehosting alongside both
specific and generic interventions.

* We conduct a large-scale evaluation on 7,111 unique
firmware samples from nine different vendors and fully
rehost 2,055 web servers. We also demonstrated unique
advantages of Greenhouse for vulnerability discovery
and assessment by comparing against the state-of-the-art
firmware fuzzing solution, FirmAFL.

In the spirit of open science, we will publicly release the
source of Greenhouse and research artifacts upon the accep-
tance of this paper. We are investigating solutions for sharing
our firmware data set within the research community without
violating device vendors’ software distribution restrictions.

2 Background and Motivation

Firmware contains one or more services, where each ser-
vice may have one or multiple executables that implement
the service. Rehosting is the process of recreating the be-
haviors of one or several firmware services on a hardware
device (e.g., a router) inside an emulated environment. In
this section, we first present state-of-the-art techniques for
firmware rehosting (Section 2.1). Next we define the fidelity
of rehosting (Section 2.2), and then map rehosting techniques
into varied rehosting requirements and identify a research
gap (Section 2.3). Finally, we present the motivation for our
solution that fills the gap (Section 2.4).



2.1 Rehosting Goals and Techniques

IoT systems can be categorized into three types [11,24]:
Type-I devices, which run a general-purpose operating sys-
tem (OS) and the device is adapted to embedded environ-
ments. Type-II devices, which have custom OS designed for
embedded environments, but still share a distinction between
the application layer and the kernel. Type-III devices, also
known as “monolithic firmware,” where the code is a single
blob running on the device, and it usually has tight coupling
between the firmware and its hardware.

The rigidity of firmware and the hardware it runs on
severely limits the types of analysis that researchers can con-
duct. A key advantage of rehosting is applying diverse analy-
sis techniques to a firmware service, ideally in a scalable and
automated manner [11].

Through rehosting, researchers have attempted hardware
replacement, behavioral analysis, or engineering compati-
bility with legacy components [36]. Given the dire situa-
tion of IoT-world security, most rehosting studies focus on
security analysis, such as automated vulnerability discov-
ery [12,22,27,31,39] and vulnerability risk assessment (i.e.,
assessing the real-world impact of an exploit) [4, 20, 40].
These solutions either are sole static analyses [10, 15, 17],
or combine static analysis with full-system emulation (for
Type-1 devices) or full-firmware emulation (for Type-II
and III devices) using OS-level emulators (e.g., QEMU-
system) [4, 5,12, 15, 18,20,27,28,31,32,39]. The use of
full-system emulators attempts to minimize the discrepancies
between a rehosted environment and the original environment
(i.e., a real device).

2.2 Rehosting Fidelity

Divergences between the emulated environment and the

original can cause a rehosted firmware service to behave
differently or even fail to run entirely. Abstractly, we define
fidelity of a firmware component in an emulated environment
as the degree to which it resembles the same component on a
real device. We further define the fidelity of static components
(e.g., files) as Extraction Fidelity and the fidelity of dynamic
components (e.g., the runtime behavior of a firmware service)
as Execution Fidelity.
Extraction Fidelity. Static components in a firmware image
include files (or raw data when no file systems are used), as
well as data that is stored on the image or in hardware (e.g.,
NVRAM). Researchers usually obtain these components by
extracting data from downloaded firmware images or physical
devices. These can be supplemented with meta-information,
such as debug symbols and source code of open-source li-
braries, and common manufacturer-specific information (e.g.,
memory layout). A high degree of Extraction Fidelity means
that the majority of components on the original device are
obtained or extracted, while low Extraction Fidelity arises
when extraction fails or yields incomplete results.
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Figure 1: Hierarchy of rehosting requirements. Both rehost-
ing fidelity and costs increase from bottom to top.

Execution Fidelity. On most embedded devices, Execution
Fidelity of a firmware service can be compounded by the
presence or absence of peripherals—hardware components
that communicate with the service to perform specific tasks,
such as controlling LEDs, reading sensor data, or sending
signals. Examples of low Execution Fidelity in an emulated
service include unintended behaviors, missing pieces or bro-
ken protocols during communication that hamper access to
the service (e.g., failing to log in to an emulated web por-
tal), or even prematurely exiting or crashing the service itself.
Achieving a high level of Execution Fidelity is critical during
vulnerability discovery and assessment, as behaviors caused
by low Execution Fidelity may lead to false positive alarms
(if any crashes are treated as vulnerability indicators) or false
negative alarms (when vulnerable code does not run at all in
emulation).

Execution Fidelity and Extraction Fidelity. High Extrac-
tion Fidelity is a stepping stone toward high Execution Fi-
delity, because configuration entries and file content can affect
the behavior of firmware services. Figure 1 illustrates the hier-
archy of rehosting requirements. The bottom levels are more
fundamental and easier to achieve, and the upper levels are
usually much harder to achieve.

2.3 Rehosting and Execution Fidelity

Table 1 shows the rehosting requirement of existing rehost-
ing techniques. Existing solutions either skew towards full-
system emulation to perform dynamic analysis, or sidestep
the execution fidelity issue entirely to focus on pure static
analysis. Although full-system emulation enables high Ex-
ecution Fidelity, it often comes with high overhead and a
high cost, especially for dynamic analysis techniques such as
fuzzing.

Researchers have proposed workarounds to reduce the over-
head involved in full-system rehosting, but in practice this
usually results in a tight coupling between the fuzzer and the
rehosted firmware targets, which hampers the generality the



Requirement ! Extraction Execution OS . Peripheral Require  Runtime ! Techniques
I Fidelity Fidelity Emulation Emulation  Devices Overhead !

Complete Emulation w/ Peripherals ; High High v v v High ; Pretender [15], Charm [32], Franken-
| | stein [27], HALucinator [5], P2IM [12],
| | Jetset [18], FirmFuzz [31], Fuz-
| I zware [28], uEmu [40]

Complete Emulation : High High v X X High : FirmAE [20], Firmadyne [4], Fir-
| , MAFL [39]
Partial Emulation, Single Service | High High X X X Low | Greenhouse
Data Extraction ‘ Low - X X X None ‘ FirmUSB [17], Karonte [10]

Table 1: State-of-the-art rehosting techniques organized by the Execution Fidelity and Extraction Fidelity.

of rehosting techniques. For example, during the evaluation
of Greenhouse, we found FirmAFL [39] requires intensive
manual effort for harnessing each firmware target (details in
Section 7). Additionally, configuration, software, and hard-
ware discrepancies between the real device and an emulation
environment are oftentimes inevitable. Increasing the exe-
cution fidelity by resolving these discrepancies piecemeal
requires significant manual effort for each device.

2.4 Motivation

Most vulnerabilities in firmware are unrelated to peripher-
als. We sampled 100 firmware CVESs reported on NVD [25]
within the last two years and found that only 14% of them
were related to hardware. Many of the remaining ones are
intrinsically independent of hard-to-emulate, device-specific
characteristics and features. For example, Tenda recently dis-
closed 10 buffer overflow vulnerabilities in network-facing
functions of the httpd executable of its AC21 device, none
of which interact with peripherals. However, these executa-
bles may encounter roadblocks, such as loading configuration
entries, communicating with a peripheral, or invoking device-
specific features, before reaching the vulnerable program
points. For the purpose of vulnerability discovery and risk
assessment, our insight is that we can automatically eliminate
many of these roadblocks by directly manipulating the binary
code.

Over the past few years, researchers recognize that many
firmware vulnerabilities do not require a faithful emulation
of peripherals. Partial emulations using stubs [4,20,31] or
models [12,15,40] have been used to find vulnerabilities in
firmware through dynamic analysis. We generalize this idea
by applying it onto all roadblocks in emulated firmware ser-
vices. Instead of tricking a service into communicating with
a stub, we simply patch the binary code to prevent services
from tripping on these roadblocks.

Further, by observing that most IoT vulnerabilities only
involve one firmware service, we focus on user-mode emula-
tion of individual firmware services. By recreating only the
necessary emulation surrounding a firmware service, we aim
to achieve sufficiently high Execution Fidelity without the ex-
pensive full-system emulation. This allows us to significantly
improve the execution speed and the portability of rehosted

services, and enables us to integrate with existing tools such
as AFL [38] and RouterSploit [34].

3 Single-Service Rehosting

Greenhouse focuses on Type-1 IoT devices (as defined in
Section 2.1 that use a Linux-based operating system (OS).
We further select routers because they represent one of the
largest and most commonly studied subset of IoT devices in
the wild. We limit ourselves to firmware images that run on
the following 32-bit architectures: MIPS, MIPSEL, ARM,
ARMEB, and X86, as they represent the majority of publicly
available firmware images in the wild.

A single service on firmware. Consider the firmware on a
device with multiple running processes that constantly ex-
change information during execution. We can define services
based on data hierarchy between these processes. A single
service represents a self-contained set of processes within
the image that do not communicate with any other processes
that the primary process is not the parent of. For example, a
web-server binary may invoke several scripts to dynamically
generate HTML content for its users. The web server is the
primary process, which, together with the scripts, constitutes
a single service.

Single-service rehosting focuses on rehosting these type
of firmware services. We decide to target web servers in this
paper as they are the most commonly accessible service from
LAN ports of routers across multiple vendors, and they are
the gateway for many CGI binaries. To minimize the execu-
tion overhead, we rehost services in user mode (i.e., without
full-system emulation): We use QEMU-user to emulate ser-
vice binaries inside a chroot file system, which we term
single-user rehosting, as opposed to full-system rehosting
(via QEMU-system) that other solutions use. Single-user re-
hosting runs the target service binary in user space and does
not emulate any kernel modules.

4 Greenhouse Overview

Greenhouse is an automated system for single-user rehost-
ing of single firmware services. It comprises three main
components: the Runner, Checker, and Fixer. Supplement-
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Figure 2: An overview of the Greenhouse pipeline that shows
the flow of data between components as a firmware image
progresses through the iterative rehosting pipeline, along with
key libraries that each component relies on.

ing these main components are an Extractor component that
performs the initial image extraction as well as an Exporter
component that packages the rehosting results for later use.
Outside of Greenhouse we created a Crawler module that
builds the firmware dataset used in our evaluation.

A firmware image being rehosted by Greenhouse starts at
the Extractor, spends the majority of the rehosting process in
an iterative loop among the Runner, Checker, and Fixer, and
finally exits the process as a standalone Docker container via
the Exporter. This process is fully automated.

4.1 File System Extraction

Extraction is done via Binwalk with all optional extraction
tools installed. We call Binwalk with both -M (Mashotrya)
and —-preserve-symlinks to recursively extract the root
file system from the firmware image and preserve symlinks.
The Extractor then performs static analysis to identify the
web-server binary, its architecture, and all C standard libraries
against which it was linked. Using this information, it applies
a number of common interventions to the file system (dis-
cussed in Section 0) that generally improve the Extraction
Fidelity of the extracted file system. This stage completes
once the architecture, libraries, and the target web server are
identified and passed to the Runner.

Although Greenhouse focuses on identifying and rehosting
web servers, it supports rehosting any type of single service.

4.2 Target Emulation

The Runner is the core of Greenhouse’s iterative rehosting
loop. It executes each web server inside a Docker container
via QEMU-user. We use a Docker container to facilitate tear-
down and setup between iterations, because each run leaves
artifacts in the file system and environment that may affect
subsequent emulations if not cleaned up. We use chroot to
ensure that the file system that is visible to the rehosted web
server is the same as the on-device file system. Runner sup-

ports two tracing modes: In partial tracing mode, it collects
syscall traces of the parent process and all child processes. In
full tracing mode, it collects syscall and instruction traces (in-
cluding addresses of all executed basic blocks) of the parent
process and all child processes.

The Runner starts the web server, waits for up to 60 sec-
onds, then invokes the Checker component to test the web
server. The emulation and the rehosting loop terminate if
the Checker component deems the service as successfully
rehosted. Otherwise, the Runner parses the generated trace
logs and waits for a potential wait loop. If it detects a wait
loop or if the time spent in emulation exceeds a threshold
the Runner forcibly terminates the emulation. Otherwise, it
continues waiting and running the Checker against the web
server periodically (e.g., every 10 seconds). This design is
to handle the significant variance in start-up time between
firmware services—using a fixed delay was infeasible.

At the end of emulation, all trace logs are collected and
sent to the Fixer.

4.3 Fidelity Testing

The Checker component tests the fidelity of the rehosted
service (which the Runner emulates) and passes the results to
the Fixer, which then determines what interventions to apply.

The Checker takes as input the brand name of the firmware
and an initial list of potential TCP ports to test. It tests basic
connectivity to the web server by performing an HTTP GET
request to each network address. For every request that re-
ceives a response, the Checker verifies that the HTTP status
code is either 200 (OK) or 401 (Unauthorized). We then use
a heuristic-based Selenium script to detect the existence of
login portals, and we attempt to log in if one exists.

Regardless of the login result, the same Selenium script
then loads the landing page of the web server. We check
for common error messages, empty HTML pages, and other
indicators of misconfiguration that are generalizable to the
broad set of router brands that we analyze. The Checker uses
these indicators to determine the level of Execution Fidelity
of the rehosted service (see Section 5).

The Checker reports the results of its probing, e.g., the
resulting status codes, timeouts, and any HTTP headers used
in the final GET request, to the Fixer. While the Checker only
tests web-server-specific behaviors, Greenhouse is generic
enough that users may plug-in other Checkers and Fixers for
rehosting other types of services.

4.4 Service Fixing

The Fixer performs run-time interventions that are used by
Greenhouse to bypass rehosting roadblocks encountered dur-
ing the iterative rehosting process. It uses traces and error logs
from the Runner as well as probing results from the Checker
to diagnose potential roadblocks that limit Execution Fidelity.
For each roadblock, the Fixer applies the corresponding inter-
vention, which we will detail in Section 6. For interventions



that requires binary manipulation, Greenhouse uses radare2
to assemble generic patches for different architectures [2].
After applying interventions for all identified roadblocks,
the Fixer passes the modified file system and web server bi-
nary back to the Runner to initiate the next rehosting iteration.
We repeat this loop until the emulated image is rehosted to a
sufficient level of Execution Fidelity (as determined by the
Checker), until we reach a point where we are unable to
improve the fidelity, or we reach the maximum number of
iterative cycles (empirically, 30 in our experiments). The
rehosted file system is then packaged by the Exporter.

4.5 Containerization

The Exporter creates a tar file containing the rehosted file
system, a set of scripts for running the rehosted service, meta-
information such as username and passwords for logging
in, and a Docker compose file that specifies container-level
information (e.g., network devices) that is needed to run the
rehosted service.

5 Rehosting Milestones

Each rehosting loop (Running, Checking, and Fixing) at-
tempts to increase the level of Execution Fidelity for the
target service. Conceptually, Greenhouse breaks down the
Execution Fidelity that the target service achieves into four
milestones: unpack, execute, connect, and interact.

Separating each of these milestones are rehosting road-
blocks that hinder progression to the next level of Execu-
tion Fidelity. These roadblocks are discrepancies between
the emulated environment that our rehosted service runs in
and the physical device. We empirically determine a set of
common roadblocks through manually examining hundreds
of firmware samples and develop a set of interventions for
as many of them as possible. The types of roadblocks en-
countered, and the interventions deployed by Greenhouse to
resolve them, are discussed in greater detail in Section 6.

By iteratively applying these interventions to the web server

and the surrounding file system environment, Greenhouse can
drive the Extraction Fidelity and Execution Fidelity up to the
level where dynamic analysis techniques (e.g., fuzzing) can
be effectively applied.
Milestone 1: Unpack. At this stage, Greenhouse does not
differ much from other full-system rehosting techniques. To
begin rehosting, we must first unpack a firmware image and
extract from it a complete file system.

Because Greenhouse only supports Type-I firmware, we
consider success at this stage to be the extraction of a recog-
nizable Type-I Linux-based file system, which is indicated
by the presence of a shell (e.g., /bin/busybox or /bin/sh)
binary with a supported architecture. Failing to locate these
binaries is an indicator of low Extraction Fidelity, which re-
quires additional unpacking effort.

Milestone 2: Execute. Rather than trying to emulate the en-

tire boot environment, Greenhouse locates an executable bi-
nary that is associated with the router web server using a
whitelist of common web server names. Greenhouse veri-
fies if the identified web server binary can execute inside
a chroot environment using QEMU-user. As this stage is
more concerned with achieving high Extraction Fidelity than
Execution Fidelity, we consider the milestone achieved even
if the web server immediately exits or crashes, as long as it
executes.

Milestone 3: Connect. The goal of this stage is to achieve a
minimal level of communication with the emulated firmware
service. This usually requires the emulated service to execute
past its environment checks and bind to one or more ports at
its desired addresses. Reaching this stage is crucial for any
dynamic vulnerability analysis techniques, as many exploits
for firmware involve communicating with its network-facing
services.

We consider this milestone achieved if we can receive an
HTTP response after sending an HTTP request to the rehosted
service without it terminating, timing-out, or prematurely
crashing. Success in this stage indicates that the rehosting
has achieved a low level of Execution Fidelity, which may be
sufficient for dynamic analysis in some cases (e.g., finding
vulnerabilities in HTTP request parsing code).

Milestone 4: Interact. Once the low level of Execution Fi-
delity is reached, Greenhouse attempts to drive the rehosting
to as high a level of Execution Fidelity as possible. Note that
Greenhouse may perform interventions that barely improve
or even detract from other parts of the emulation but that
specifically improve the fidelity of our target service for the
purposes of our analysis. For example, Greenhouse may re-
move a CAPTCHA check for a service to streamline fuzzing
for crashes inside the CGI handlers exposed by the web server.

To determine if the web server is running at a high Execu-
tion Fidelity level, Greenhouse performs some basic interac-
tions with the web service. It checks status codes of HTTP
responses and compares the returned content against a set of
pre-set error strings to identify malfunctioning backends. We
use Selenium to load dynamic content and attempt some com-
mon login protocols. While these checks are not a complete
test of the firmware web server’s behavior, our evaluation in
Section 7 will show that rehosting a firmware service to this
milestone is sufficient for many vulnerability discovery and
assessment tasks.

6 Roadblocks and Interventions

When trying to improve the Extraction and Execution Fi-
delity of an image, multiple complications may arise that
limit progress. We term these obstacles rehosting roadblocks,
and their corresponding solutions interventions'. This sec-
tion identifies the common roadblocks and presents several

IPrior work referred to interventions as arbitrations [20], augment-
ing [39], mitigations [26] and refinement [11]



automatable interventions for them, which we implement in
Greenhouse.

6.1 Roadblocks

While the exact set of complications differs from firmware
to firmware, in the course of developing Greenhouse, we ob-
served that there are many similarities and overlaps between
them, even across different brands.

Missing Paths (R1). The initial extraction contains broken
symlinks, missing files/folders, or missing/misplaced library
files. Often, these files are generated or unpacked as part of
the initialization scripts run at boot, and contain data critical
for proper execution of firmware binaries.

Runtime Arguments (R2). Some binaries take specific con-
figurations on the command-line during runtime (e.g., path to
webroot content, default starting port to bind to, etc.). This
problem is unique to single-binary rehosting, as full-system
rehosting abstracts the issue to the initialization scripts that
the kernel runs at boot.

Peripheral Access (R3). A common roadblock that many
emulations, particularly ones focused on targeting the periph-
erals themselves, try to address. Firmware web servers may
try to communicate with hardware peripherals in a variety of
ways ranging from access an expected /dev file to directly ac-
cessing a reserved region of memory. In our limited emulation
these methods usually result in a crash or exit.

NVRAM Configurations (R4). NVRAM (Non-Volatile
Random-Access Memory) is a hardware component com-
mon to many firmware routers. NVRAM usually contains
default configuration data that is necessary for the firmware
image to start up and function.

Hard-coded Network Devices (RS5). Web servers usually
have a hardcoded “default” IP addresses or device name that
they bind to by default. If a network device with that address
or name is not present, the web server fails. Included in this
category are web servers that communicate primarily over
IPv6, as it is not supported in our emulation.

Multi-Binary Behavior (R6). Besides configuration files
generated by initialization scripts at startup, some web servers
may generate content or load configurations via IPC (inter-
process communication) with separate, daemonized processes
running in the background.

Non-Critical Environment Checks (R7). A catch-all cate-
gory that covers any miscellaneous checks that the firmware
binary might perform on its environment. Examples include:
checking for DNS/web access, checking the user/group we
are executing under, checking environment variables, and
checking CPU resource usage. These checks share the com-
mon behavior of exiting if conditions in the check are not
met.

Environment Mangling (R8). Many firmware binaries are
run in an enclosed environment, which enables them to behave
with complete disregard for other processes. These behaviors
may mangle or corrupt parts of the emulation environment

that are not intended to be visible to the emulated service. For
example, a firmware binary may redirect stdout and stderr,
then close every other file descriptor, under the assumption
that it is the only process making use of file-system I/O. This
mangles the logging done by our QEMU emulator that gathers
critical data to identify potential roadblocks and interventions
needed.

6.2 Interventions

Each of the aforementioned roadblocks has a corresponding
intervention that we perform. Interventions either try to fulfill
the criteria imposed by a Roadblock or bypass it. While
fulfilling a Roadblock usually leads to better fidelity while
bypassing lowers it, identifying the criteria of each specific
Roadblock on each specific system is not a scalable solution.

Thus, Greenhouse implements a “best-effort” intervention
system that tries to fulfill as many roadblocks as possible
before falling back to a general patching system that bypasses
the roadblock instead. What follows is the list of best-effort in-
terventions that Greenhouse performs and their corresponding
roadblocks:

File Setup (I1) - /R, R3, R7]. Using strace, we detect
missing files by filtering for common file access system-calls
such as open () and access (). We parse them for the ex-
pected paths and create a corresponding empty file/folder
in the rehosted file-system. If we are instead able to find a
backup of the file, or if the file path was misplaced in our
runtime environment, we copy it to the new location.

File Sanitization (I12) - /R3, R7]. We observed that periph-
eral access is sometimes performed through I/O operations on
/dev/ nodes, and can be bypassed by replacing the node with
an empty file. This handles cases where a service appears
to hang due to a blocking read call on a non-existent device
interface, pipe, or socket. We thus “sanitize” the file-system
immediately after unpacking when extraction is done by re-
placing all special files, except for symlinks (block, character
device, pipe, and socket), with empty regular files.
File-system Snapshot (13) - [R1, R2, R7]. We leverage Fir-
mAE to run a full-system emulation of the image and obtain
a “file-system snapshot” of the runtime processes, files, and
QEMU serial logs. From this snapshot we can extract any files
that are generated at boot, command-line arguments passed
to the target binary, and any configuration data loaded into
NVRAM or other supporting background processes.
nvram-faker (I4) - [R4]. nvram-faker is an open source
project that emulates the behavior of common NVRAM li-
brary functions by storing key-value pairs as files [8]. We
extend it to implement nvram-set functionality and provide
wrappers for a wider range of known NVRAM functions. We
cross-compile a standalone version of the library and replace
the default 1ibnvram. so. Our improved nvram-faker logs all
keys used by the firmware, including ones that are not part
of its current dictionary. Greenhouse then tries to provide a
key-value pair in the next iteration of our emulation based on



the NVRAM values from the file-system snapshot or from a
list of common defaults.

Runtime ArgParser (I5) - [R2]. We provide a fallback inter-
vention if command-line arguments for the firmware binary
cannot be obtained from a file-system snapshot. A simple
heuristics-based regex parser uses the brand and name of
the web server to parse for potential runtime arguments and
supply common defaults to them.

Dummy Network Devices (I6) - [RS5]. A modified version of
the QEMU bind () syscall logs whenever a bind is attempted
on a particular network address or device name. Greenhouse
then configures the subsequent Docker containers in our em-
ulation with the corresponding network bridge. In case the
binary is intended to be run outside a Docker container Green-
house also provides an automatically generated script that
uses the Linux ip binary to create the necessary dummy de-
vices.

Background Script Plugins (I7) - [R6]. Although a general
solution to handle multi-service targets is considered out of
scope, Greenhouse provides a specific solution for emula-
tions that communicate with other processes running in the
background as a core part of their functionality. Greenhouse
provides a framework for plugin scripts that specify a heuris-
tic for identifying the binary and a means of running it. These
scripts can also specify basic shell commands that can be run
inside FirmAE’s emulation to retrieve runtime configuration
data. As a demonstration of this, we provide plugins for two
such extra services, xmldb and config, which are used by D-
Link and Netgear web servers respectively to set and retrieve
configuration data.

IPv6 Workaround (I8) - /R5]. Many new IoT devices,
routers included, use IPv6 for communication. This is not
always supported by the host machine on which Greenhouse
is running, such as the Kubernetes cluster that we used to
conduct our large-scale rehosting and analysis. Hence, we
implemented a workaround by modifying the bind () syscall
inside QEMU to convert binds to IPv6 addresses to the IPv4
address 0.0.0.0. We also add a simple array to de-conflict
binds to the same port on 0.0.0.0, to handle the case where
multiple addresses are converted and bound to 0.0.0.0.
Patching sysinfo () (I9) - [R7]. Some routers adaptively
disable services based on currently load, which makes it dif-
ficult to perform dynamic analysis. This was particularly
notable during large-scale analysis when running multiple
Greenhouse emulations on the same Kubernetes node. We
patch QEMU so sysinfo () always returns O for the current
CPU load, thus preventing these behaviors.

Logging Behavior (I10) - /R8]. Our emulation in user-mode
shares file descriptors with the emulated service. To ensure
that our emulation trace logs are not mangled, we modify
the open () and close () syscalls, as well as the behavior of
QEMU’s trace function, to reserve a range of file descriptors
(300-400) for our log files. Attempts to close descriptors in
this range will return failure.

6.3 Patching

In the case that our specific interventions are insufficient,
Greenhouse attempts to directly patch the firmware binary to
bypass the section of code that prevents it from reaching the
next stage. While this might potentially lower the Extraction
and Execution Fidelity of the firmware binary, we found that
by limiting the type of patching done to specific conditions, it
is surprisingly effective at enabling further rehosting.

Greenhouse handles three types of patches: a Premature

Exit patch, a Wait Loop patch, and a Crashing Instruction
patch. To identify the relevant patch automatically, we use
angr [30] to construct a context-sensitive control-flow graph
(CFQG) of the firmware binary. A context-sensitive CFG is
constructed using a static CFG, where the calling context
under which a particular block is called is taken into account.
Thus, each node in the graph is differentiated not just by its
address, but also the addresses of all the blocks that call it in
the static CFG. This allows us to easily map the execution
trace of a binary to the CFG for the purposes of our Premature
Exit and Wait Loop patches.
Premature Exit Patch. The Premature Exit Patch handles the
general case where the binary tests the result of some manner
of check, then branches to an exit function if the check fails.
By identifying the branch instruction taken by the firmware
binary that leads to the exit function, we can flip the branch to
bypass the check altogether. To do so, Greenhouse maps the
execution trace of the firmware binary to the context-sensitive
CFG and scans for call to exit () or abort (). In case no
such function signature can be found, but the binary exited
cleanly, it assumes that the last instruction in the execution
trace is the exit function.

The Patcher then recursively prunes the context sensitive
CFG from the exit call to the nearest dominator within the
mapped trace that is the parent of a child that it (1) does not
dominate and (2) is not part of the original trace. Because all
nodes prior to the dominator eventually lead to the exit, we
may assume that this block corresponds to the critical branch
point that leads to the exit. We then search the block for the
relevant jump instruction and patch it to point at the untaken
branch.

In practice, this Patch is effective at handling most Non-

Critical Environment Checks (R7) and certain types of Pe-
ripheral Access (R3). It can also help compensate for inter-
ventions that result in empty file reads (I1) when the binary
expects content.
Wait Loop Patch. The Wait Loop Patch handles cases where
instead of exiting the binary is instead trapped in a constant
loop waiting for external input from another process. Exam-
ples include a poll () for network activity in a basic web
connectivity check, or a sleep () loop while waiting for a
particular peripheral to connect.

The Wait Loop Patch uses the same context-sensitive CFG
mapped to the execution trace to determine that a program is



looping. It attempts to find a branching node that is not part
of the original execution trace and does not immediately lead
back to the loop. As many firmware binaries are essentially
large loops, we constrain ourselves to “tight” loops of no
larger than 30 basic blocks.

To ensure we do not inadvertently patch the section of

code responsible for handling incoming server requests, this
patch is only invoked in cases where no network connectivity
was detected despite timing out. Similar to the Premature
Exit Patch, the Wait Loop Patch is a generic intervention that
handles a subset of Non-Critical Environment Checks (R7)
and Peripheral Access (R3) roadblocks.
Crashing Instruction Patch. The Crashing Instruction Patch
usually does not need the CFG. It takes the address of the
last recorded instruction in the execution trace, maps it to its
respective basic block in the firmware binary, and patches
the next instruction that would be executed, replacing it with
nops. In the case where the instruction is outside the address
space of the binary, such as inside a library call, the Patch
uses the CFG to determine the address of the caller instruction
and place a nop there instead.

This patch is only invoked when a segmentation fault is
detected during emulation, as it assumes that the next instruc-
tion that would have been recorded caused the fault. While
this can be highly destructive to the firmware binary, and the
overall fidelity of the emulation, it is one of the cleanest ways
to handle invalid direct memory accesses such as in R3.

7 Evaluation

We design a series of experiments to answer the following
research questions:

* How does Greenhouse’s rehosting performance com-
pare to state-of-the-art full-system rehosting solutions?
(Section 7.3)

» What factors impact the rehosting performance of Green-
house? (Section 7.4)

* Does Greenhouse reach a level of Execution Fidelity
that enables vulnerability discovery and risk assessment?
(Section 7.5)

* How much does Greenhouse-rehosted service improve
the fuzzing performance? (Section 7.6)

7.1 Evaluation Environment

We conducted all experiments on a Kubernetes cluster that
contains 42 nodes and over 2,000 CPU cores. We ran 300
pods in parallel and assigned each pod a minimum of 2 CPU
cores and 8GB of RAM. We modified FirmAE to run on a
Kubernetes cluster. Our modifications will be released when
we open source all research artifacts.

7.2 Firmware Image Collection

To ensure we have a wide coverage of router models with
the most up-to-date firmware samples, we built our own

firmware image collection by crawling websites of nine well-
known router brands (ASUS, Belkin, D-Link, Linksys, Net-
gear, Tenda, TP-Link, TRENDnet, and Zyxel) and download-
ing all versions of router and camera firmware images that are
available. This provided 12,943 firmware images. We filtered
them and removed encrypted or incomplete images and any
images that do not resemble Type-I Linux-based firmware.
Then, we merged the remaining images with FirmAE’s data
set and removed duplicates. Our final collection of firmware
images consists of 7,111 unique firmware images. This col-
lection is 6.3x FirmAE’s data set (containing 1,124 images),
and 1.3x of the number of router images in Firmadyne’s data
set (which contains 5,507 images collected in 2015 from the
nine vendors)?.

7.3 Firmware Rehosting Results

We compare Greenhouse against its closest predecessor,
FirmAE. Because FirmAE is based on Firmadyne, and Fir-
mAE already evaluates against Firmadyne in their paper, we
do not include Firmadyne in this experiment.

Determining levels of Execution Fidelity. We use the
Checker component (described in Section 4.3) to determine
the Execution Fidelity in terms of the milestones described in
Section 5. In addition, we also parse the logs of both Green-
house and FirmAE to determine the degree to which Unpack
and Execute succeeded for the image. For Greenhouse, we
consider Unpack successful if we find a web server, and a suc-
cessful Execute if we can run it in QEMU-user. For FirmAE,
we consider Unpack successful if it can find and mount a file
system image, and successful Execute if it can boot the image
in QEMU-system.

Results. Table 2 shows the numbers of rehosted firmware
services (or images for FirmAE) that reached each rehost-
ing milestone under Greenhouse and FirmAE. Overall, the
number of Greenhouse-rehosted firmware services is compa-
rable to that of FirmAE (2,055 vs. 2,023). Greenhouse is
significantly more successful for some brands (e.g., ASUS,
Belkin, and Tenda) while less successful for other brands (e.g.,
Netgear and TP-Link).

Overlaps between rehosted services. To understand the
results, we examined the overlap between FirmAE- and
Greenhouse-rehosted services. Interestingly, as shown in
Table 3, the set of firmware services that Greenhouse fully
rehosted has little overlap with the ones that FirmAE success-
fully rehosted. Together, FirmAE and Greenhouse are able
to rehost 3,326 out of 7,111 firmware services, which cover
nearly 50% more than either solution can individually rehost.
This shows that Greenhouse is not a subset of full-system em-
ulation techniques, but rather a technique that handles unique
rehosting obstacles that full-system emulation techniques can-
not.

2While Firmadyne’s data set has more firmware images (23,035), the
majority of them are not router firmware images.



! ! FirmAE ! Greenhouse
Brand I Initial I Unpack  Execute  Connect Interact I Unpack  Execute  Connect Interact
ASUS ; 830 ; 828 813 453 5 ; 828 814 721 684
Belkin | 63 | 63 56 19 9 | 62 62 38 32
D-Link | 1,467 | 1,436 1,077 562 435 | 1,090 1,067 488 423
Linksys | 84 | 84 78 35 24 | 81 78 28 26
Netgear | 2,796 | 2,669 2,487 1,289 970 | 2,300 2,224 1,060 567
Tenda 174 163 143 28 12 164 163 75 61
TP-Link ' o045 ' 937 863 466 372 1 s 823 157 91
TRENDnet ' 732 ' 717 664 275 193 ! 637 629 280 164
Zyxel ' 20! 20 20 5 3! 20 19 12 7
Total ' 7,111 ' 6917 6,01 ERED 2003 ' 6004 5809 2,859 2,055

Table 2: Numbers of FirmAE- and Greenhouse-rehosted web servers that reached each of the four rehosting milestones, organized

by brand.

: Successfully Rehosted By

. FirmAE only — Both  Greenhouse only
ASUS ‘ g I 630
Belkin | 7 2 25
D-Link 330 105 93
Linksys 11 13 15
Netgear 270 700 297
Tenda ! 10 2 sl
TP-Link 25 347 66
TRENDnet ' 94 99 70
Zyxel [ 1 2 6
Total 1 1271 752 1303

Table 3: Overlaps of firmware services that FirmAE and
Greenhouse successfully rehosted (i.e., reaching the Inter-
act milestone), as well as numbers of services that are only
rehosted by one solution, organized by brand.

7.4 Case Studies
7.4.1 ASUS Firmware

We examined ASUS firmware services for which Green-
house rehosted 681 out of 830 to the Interact milestone while
FirmAE only rehosted 5. While both Greenhouse and Fir-
mAE rehosted similar numbers of services to the Execute
milestone, FirmAE was unable to Connect half of them, and
only 5 were able to Interact.

Configuration Reuse. We first analyzed 300 services that
FirmAE rehosted to Execute but was unable to Connect but
Greenhouse successfully rehosted until Connect. This repre-
sents the set of services where our interventions likely mit-
igated roadblocks that are related to network connectivity.
Greenhouse made use of NVRAM data from external sources
for 219 of them, most notably NVRAM data from other Net-
gear images in our collection. Critical NVRAM values in-
clude lan_ipaddr and env_path that directly affect the web
server’s execution. By reusing configuration information
from other images in our collection, Greenhouse rehosted
more services to the Connect milestone.

Power of the Checker. We then analyzed 383 services that
FirmAE rehosted until Connect could not Interact, and that
Greenhouse rehosted to Interact. This represents the impact
of Greenhouse’s interventions on the Execution Fidelity of
rehosted services. For nearly all services (310/383), the em-
ulated service in FirmAE returned an HTTP status code of

10

200, but the actual web pages displayed file-not-found error
messages’. Greenhouse also encountered these errors during
rehosting, however Greenhouse successfully detected that the
rehosting was insufficient due to the stricter, Selenium-based
checking criteria employed by the Checker, and performed
more iterations of interventions on these services. In the next
few iterations, Greenhouse fixed all encountered roadblocks,
including bypassing missing files (e.g., 0IS_wizard.html or
cert.pem).

In summary, Greenhouse outperformed FirmAE due to in-
terventions and the iterative application of them. We also
migrated critical configuration data across firmware that Fir-
mAE does not.

7.4.2 Tenda Firmware

Greenhouse used the Wait Loop Patcher to patch 26 Tenda
services and applied the Premature Exit Patcher on all 51
Tenda services. After manual analysis, we identified a key
roadblock on some Tenda services: the ConnectCFM () func-
tion. This function accesses the cfm binary, which inter-
faces with the CFM peripheral that persists configuration data
across reboots [35]. When unable to access CFM, web servers
exit with the error message “connect cfm failed!” before initi-
ating any network behaviors. By patching the check leading
to exit, Greenhouse forced the execution into network-facing
code.

7.4.3 TP-Link Firmware

We examined why Greenhouse successfully rehosted much
fewer Netgear and TP-Link services than FirmAE. The ma-
jor reason is that many web servers in Netgear and TP-Link
firmware heavily relied on communication with other pro-
cesses that the web servers themselves did not start. For
example, a TP-Link web server proxies all HTTP traffic to
another service through dbus-daemon, and both dbus-daemon
and the other service must be started by init.d scripts. Strictly
speaking, these targets do not belong to single-service rehost-
ing, but we still report them as rehosting failures for fairness.
We leave single-user, multi-service rehosting to future work.

3According to RFC 2616 [1] an HTTP 200 status code means “The re-
quest has succeeded”, yet clearly these devices to not follow the specification.



7.5 Vulnerability Risk Assessment

To evaluate the applicability of rehosted services for vul-
nerability risk assessment, we follow FirmAE’s convention
and use the automatic exploit framework, RouterSploit. We
selected all rehosted services that reached at least Connect
for both Greenhouse and FirmAE and replayed 125 known
N-day exploits against each rehosted service.

Result. As seen in Table 4, RouterSploit exploited 722 known
vulnerabilities across 2,859 Greenhouse-rehosted firmware
services. Meanwhile, RouterSploit found 617 known ex-
ploits on 3,132 samples rehosted by FirmAE. Despite not
conducting full-system emulation or modeling peripherals,
Greenhouse-rehosted services are sufficient to use for vulner-
ability risk assessment.

7.6 Fuzzing Rehosted Services

A key application for rehosting is automated vulnerability
discovery, particularly fuzzing. To evaluate the applicability
of Greenhouse-rehosted services for fuzzing, we fuzz a se-
lected subset with AFL to find vulnerabilities. We randomly
selected seven Greenhouse-rehosted services that reached
the Interact milestone, along with three firmware images with
known web server vulnerabilities in the FirmAFL data set that
Greenhouse successfully rehosted, for a total of ten fuzzing
targets. Additionally, to evaluate performance improvements
of user-space fuzzing over fuzzing with augmented process
emulation (as discussed in FirmAFL [39]), we fuzzed three
rehosted FirmAFL services using both Greenhouse+AFL and
FirmAFL.

7.6.1 Simple Fork-server Fuzzer

We chose AFL as the fuzzer and built a generic fuzzing
harness for web servers, which emulates client connections in
AFL-QEMU. We modified AFL to intercept accept () and
redirect the returned file descriptor to stdin. We terminate the
web server process when it attempts to respond to this file
descriptor via send (). This transforms a stateful web server
into a program that processes exactly one network request and
terminates, which is an ideal fit for fuzzing with AFL. We also
hooked other common networking-related syscalls to ensure
that the web server cannot detect the absence of an actual
network. Lastly, our harness automatically reasons about the
address that accept () returns to and uses it as the forking
address to accelerate fuzzing. Our harness is a 432-line patch
file that easily applies to other QEMU implementations.

The rigidity of FirmAFL. We initially planned to adapt Fir-
mAFL’s fuzzing engine for this experiment. However, Fir-
mAFL’s fuzzer is tightly coupled with their workflow and
thus is difficult to extend to new firmware services. Every Fir-
mAFL target has configuration files that contain key harness-
ing configuration settings, e.g., maximum execution counts
and fork addresses. These settings require manual reverse
engineering of the target web servers and cannot be obtained
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automatically. Moreover, FirmAFL’s integration with AFL-
QEMU includes hard-coded comparisons against specific tar-
get IDs to determine fuzzing behavior. We concluded that
FirmAFL’s approach does not generalize to new targets, and
would require significant manual effort for bootstrapping each
new fuzzing target.

7.6.2 Performance Evaluation

Each fuzzing experiment ran inside a Docker container on a
bare-metal server running Ubuntu 22.04 LTS with an 80-core
Intel Xeon Gold 5218R 2.10GHz CPU, 500GB SSD, and
270GB of RAM. For the three FirmAFL targets, we ran our
fuzzer and FirmAFL’s fuzzer ten times each and measured
both the execution speed and time to find the same crashes
that were reported by FirmAFL. We then fuzzed all ten targets
for 24 hours and measured the numbers of additional unique
crashes that were found for each target.

Table 5 shows the performance of fuzzing using AFL
on Greenhouse single-user rehosting against FirmAFL for
the three rehosted httpd servers. In all cases, our fuzzer
could find the same vulnerability reported by FirmAFL on
Greenhouse-rehosted targets. On average, fuzzing in user
space achieves a 3x improvement in speed compared to aug-
mented process emulation®.

We filter crashing inputs using tmin and md5sum to iden-
tify unique crashes that are worth looking into. We found 37
unique crashes across ten services, which we manually veri-
fied. We also ensured that the vulnerabilities were not intro-
duced by binary patching in Greenhouse. We confirmed that
24 out of 37 are legitimate 0-day vulnerabilities in firmware
services, and are in the process of responsible disclosure.

7.6.3 Replaying Exploits

FirmAFL reported 15 CVEs over nine unique firmware
images, three of which we discovered via fuzzing faster than
FirmAFL. Of the 12 remaining CVEs reported by FirmAFL,
Greenhouse successfully rehosted three to the Interact mile-
stone, seven to the Connect milestone, and one to the Execute
milestone. The others are local services that do not depend
on web servers. Because our evaluation is about the rehost-
ing performance of Greenhouse, writing additional fuzzing
harnesses for local services is out of scope.

However, to demonstrate that rehosting and fuzzing these
binaries is possible with user-mode single-process rehost-
ing, we manually replayed all exploits discovered by Fir-
mAFL against Greenhouse-rehosted targets. We successfully
replayed exploits against all firmware services that were re-
hosted to the Connect milestone, and manually verified that
they all triggered intended crashes. In total, we replayed 13
out of 15 CVEs reported by FirmAFL, showing that the re-
hosting of Greenhouse achieves a sufficiently high level of

4The sample TEW-632BRP1.010B32 timed out after fuzzing with Fir-
mAFL for 24 hours. We did not receive assistance from the authors regarding
this sample before the submission deadline, and we will continue to attempt
to contact the authors.



! FirmAE ! Greenhouse
; Path Command  Info Auth ; Path Command  Info Auth
, Traversal  Injection Leak  Bypass Traversal Injection Leak  Bypass
ASUS ; 0 12 0 0 ; 0 0 0 0
Belkin | 0 2 3 3 | 13 4 11 11
D-Link | 0 230 237 18 | 3 161 273 12
Linksys | 0 1 0 0 | 0 1 0 0
Netgear 0 69 3 0 153 9 33 0
Tenda | 0 0 0 0! 0 0 0 0
TP-Link ' 0 0 0 0! 0 0 0 0
TRENDnet ! 0 9 30 0 12 8 18 0
Zyxel | 0 0 0 o' 0 0 0 0
Total I 0 323 273 21 I 181 183 335 23

Table 4: Breakdown of running 125 N-day exploits on stage 3 rehosted images using RouterSploit. Each cell shows the number
of N-day exploits of a given type that successfully exploit a rehosted image for a given brand under FirmAE and Greenhouse

respectively.
) Greenhouse ) FirmAFL
D | time to execution | time to execution
,_crash (s) speed (#/s) | crash (s) speed (#/s)
DAP-2695 ©7,400.12 772.85  11,354.90 242.82
DIR-825 ! 1,520.58 548.84 ! 30,082.00 165.13
TEW-632BRP | 1,245.01 177.12 * *

Table 5: Fuzzing Performance of Greenhouse+AFL versus
FirmAFL. We report executions per second and the total time
taken to reach the same crashes reported by FirmAFL.

; Tmin inputs ‘ Unique crashes ‘ Unique

,_(total crashes) = (mdS + manual)  vulns

DAP-2695T TTRCO4 | 260, I I
DIR-8252.02 | 410 5 4
TEW-632BRPLOI 323 6 4
ACI450_V10.06 | 19 - 1
DAP_1513_REVA_1.01 32 1 1
DIR-601_REVA_1.02 ' 41 ! 7! 4
DIR-825_REVB_2.03 ' 52 ! 6! 2
FWRT_AC51U ! 0 2! 2
FWRT_G32_Cl ! 66 ! 5 2
TEW_652BRPv2.0R 2 ! 3! 3
Total j 1,225 | 37 1 24

Table 6: Vulnerabilities found through fuzzing ten firmware
images rehosted with Greenhouse+AFL.

Execution Fidelity for vulnerability discovery and risk assess-
ment.

8 Discussion

8.1 Discrepancies in Reported Numbers

Because our data set includes the original set of firmware
images used by FirmAE, we provide a breakdown of the re-
hosting result for the 1,124 FirmAE targets (See Table 7).
The numbers of rehosted services for FirmAE differ from
the original numbers reported in the FirmAE paper. This is
because we evaluated both platforms under stricter criteria for
success based on the milestones discussed in Section 5. For
example, FirmAE considered a firmware target successfully
rehosted if an HTTP request returned without errors or time-
outs, which roughly matches the Connect milestone. While
this may appear sufficient at first, the check does not filter out
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cases where a web server may have connectivity but not any
actual functionality, as seen among ASUS samples.

8.2 Limitations

Encrypted firmware. Greenhouse needs a high Extraction
Fidelity to perform its iterative rehosting approach. Our patch-
ing approaching also uses embedded function symbols like
exit (). We limit ourselves to rehosting firmware image that
are relatively complete, cooperative (no hidden, malicious, or
obfuscated binaries), and unencrypted.

QEMU limitations. Greenhouse uses QEMU-user to per-
form user-space emulation and is subject to any flaws and
limitations of the emulator. Specifically, user-mode QEMU
has limited support for the clone () syscall under MIPS. Due
to limitations in the abstraction when running the emulator in
user mode, unless clone () is called with very specific flags,
QEMU will not emulate it properly. This results in a num-
ber of MIPSEL binaries that implement fork servers using
clone () to fail. We estimate that this affects 147 out of 7,111
cases, about 2% of our collection. We plan to fix this issue in
QEMU-user and submit a patch upstream.

angr limitations. Greenhouse uses angr to create CFGs, and
is thus subject to bugs and limitations in angr. In particular,
a number of MIPS targets (68, or 0.9% of our collection)
crashed due to assertion failures in angr when creating contex-
sensitive CFGs.

Missing library functions. Some firmware makes use of li-
braries containing custom functions, usually for interacting
with peripherals. If these libraries are missing during extrac-
tion due to low Extraction Fidelity, rehosting further is close
to impossible. In some cases, these functions are found in the
libnvram library that we replace, which further complicates
the issue. Mitigating this roadblock would require dynam-
ically injecting custom stub functions for each special case
duringg rehosting, which we plan to address as an engineering
problem in the future.



9 Related Work

Large-Scale Emulation. Previous work in large-scale emula-
tion of firmware images almost entirely focuses on full-system
emulation. Costin et al. [7] studied 1,925 firmware images
over a variety of COTS embedded devices using full-system
emulation with common open-source web penetration tools
to discover vulnerabilities in the embedded web server. Plat-
forms such as Firmadyne [4], Avatar [37], and Avatar2 [23]
automated this process using OS emulators such as QEMU to
rehost large sets of firmware images. FirmAE [20] directly
built upon this work and formalized the approach in which
an extracted firmware image is modified to suit its emulation
environment, via arbitration techniques.

While these works demonstrated how full-system emula-
tion could be used to achieve large-scale analysis of firmware,
they also showed how the fidelity of the emulated environ-
ment limits analysis of the target. Other publications have thus
focused on improving the fidelity of full-system emulation
to include missing components such as peripheral support.
Approaches such as PROSPECT [19], CHARM [32], and
SURROGATES [21] focus on optimizations for hardware-
in-the-loop implementations. Others like Laelaps [3] and
Jetset [18] go the other way, using symbolic execution to
extrapolate peripheral behavior for their models. Meanwhile,
works like HALucinator [5] and DICE [22] emulate Hardware
Abstraction Layers (HALSs) and the DMA (Direct Memory Ac-
cess) channel to create a more generalized approach. Nearly
all of them use dynamic analysis techniques like fuzzing to
evaluate the effectiveness of their implementations.

Greenhouse is more precise in what parts of the firmware
we emulate. Instead of being forced to adapt the emulation
to the firmware, Greenhouse tailors the firmware image to
the environment. Unlike FirmAE, Greenhouse is willing to
iteratively add as many interventions as needed, including to
patching the binary itself.

This is similar to the approach taken by ARI [26] that builds
upon Firmadyne and applies their own set of “interventions”
designed to handle different failure cases over 1,709 Linux-
based firmware. ARI iteratively emulates, tests, and fixes
the firmware image using their own fidelity criterion, with a
similar distinction between connectivity and interactivity as
Greenhouse. Unlike Greenhouse, ARI still uses Firmadyne’s
full-system emulation approach to rehost firmware images.
Thus, ARI and Greenhouse can be considered orthogonal
works, with ARI applying iterative interventions to overcome
rehosting challenges in full-system emulations, while Green-
house explores the challenges of single-service rehosting in
user-space.

Another similar work is FirmAFL [39], which hybridizes
user-space execution with full-system emulation to gain an
8.2 times improvement in fuzzing performance. The platform
achieves this by switching between user and system modes
during emulation, but as discussed in our Evaluation (Section
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7), requires significant manual effort to integrate with its
dataset. Greenhouse emulates a firmware service entirely
in user-space, while being generalizable to a much larger set
of firmware images and analysis tools.

Other Analysis Approaches. While fuzzing is the most com-
mon approach for finding vulnerabilities, other works have
achieved notable success via other analysis techniques. Costin
et al. [6] performed static analysis on 32,000 firmware im-
ages by combining a correlation engine with simple keyword
searches. This approach proved surprisingly effective at find-
ing multiple vulnerabilities, including simple backdoors. Re-
cent papers analyze programs by symbolically executing them
to look for control flow bugs [9, 17,29] or statically analyz-
ing the interactions between multiple binaries [10] to detect
insecure data flows. While Greenhouse is primarily targeted
at rehosting for dynamic analysis, it does make use of static
analysis to target its interventions.

Monolithic. Though Greenhouse is limited to Type-I, Linux-
based firmware images, recent work have made significant
strides in automating the analysis of monolithic firmware.
Heapster [14] identifies the heap library used by the image
for memory allocation and uses symbolic execution to de-
tect potential vulnerabilities. PRETENDER [15] models
MMIO behavior by tracing behavior on the actual device,
while P2IM [12] tries to exhaustively probe for MMIO to gen-
erate a model. uEmu [40] uses symbolic execution to model
the image and infer peripheral behavior from its constraints.
Fuzzware [28] combines these approaches by implementing
its own instruction set architecture emulator. It iteratively
probes MMIO behavior via fuzzing and feeds the results into
a symbolic execution engine to derive models that are used to
update the emulation. The approaches taken by these works
have a conceptual similarity to Greenhouse in how they take
“slices” of the firmware image to emulate and expand their
knowledge base from there. Future work could look to adapt
techniques from one approach to the other.

10 Conclusion

We present Greenhouse, an automated system for large-
scale single-service rehosting of Linux-based firmware in
user-space. Greenhouse makes use of “best-effort” mitiga-
tions to iteratively adapt a firmware image and the emulated
environment to each other. We also define a more stringent
set of criteria for rehosting with respects to the end-goals of
emulating for dynamic analysis and vulnerability discovery.
We evaluate Greenhouse on a set of 7,111 Type-I firmware
images and rehost 2,055 of them to the minimal level of us-
ability under our new criteria. Using existing analysis tools
like RouterSploit and AFL, we find 722 N-day exploits and
24 0-day vulnerabilities. This demonstrates both the feasibil-
ity of single-service, user-space emulation in creating usable
emulated images for dynamic analysis.
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Appendix

Webserver Service Rehosting Table 7 presents the number of emulated webserver services that successfully achieved each of
the 4 rehosting milestones (Unpack, Execute, Connect and Interfact) in our experiment. We evaluated Greenhouse and FirmAE
based on the FirmAE paper’s dataset, which consists of 1,124 unique firmware images organized over the 8 brands (excluding
Tenda).

: : FirmAE : Greenhouse
Brand . Initial ~ Unpack  Execute  Connect Interact , Unpack  Execute  Connect  Interact
ASUS ‘ 107 ‘ 107 105 40 0 ‘ 107 106 104 103
Belkin | 37 37 36 12 6, 37 37 19 18
D-Link 262 262 258 196 143 258 258 176 159
Linksys | 55 55 52 29 21 53 53 22 21
Netgear = 375 375 373 268 21 372 366 219 123
TP-Link 148 148 145 106 88 142 140 23 6
TRENDnet ' 119 ' 119 112 51 34 ! 113 112 46 30
Zyxel 20! 20 20 5 3! 20 19 12 7
Total T3 T123 1,101 707 516 ' 1102 1,001 621 467

Table 7: Numbers of FirmAE- and Greenhouse-rehosted web servers that achieved each of the four rehosting milestones (Unpack,
Execute, Connect and Interfact) on the FirmAE dataset of 1,124 unique firmware images organized over eight brands (excluding
Tenda).
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